
Videos en español con subtítulos en inglés
Mexico: Healthy 46 year old man dies one minute after Covid shot
Scientists think that tinkering with genes can be profitable for them. You will be the Guinea pigs.
Benefiting from their unique physicochemical properties, graphene derivatives have attracted great attention in biomedicine. In this study, we carefully engineered graphene oxide (GO) as a vaccine adjuvant for immunotherapy using urease B (Ure B) as the model antigen. Ure B is a specific antigen for Helicobacter pylori, which is a class I carcinogen for gastric cancer. Polyethylene glycol (PEG) and various types of polyethylenimine (PEI) were used as coating polymers. Compared with single-polymer modified GOs (GO-PEG and GO-PEI), certain dual-polymer modified GOs (GO-PEG-PEI) can act as a positive modulator to promote the maturation of dendritic cells (DCs) and enhance their cytokine secretion through the activation of multiple toll-like receptor (TLR) pathways while showing low toxicity. Moreover, this GO-PEG-PEI can serve as an antigen carrier to effectively shuttle antigens into DCs. These two advantages enable GO-PEG-PEI to serve as a novel vaccine adjuvant. In the subsequent in vivo experiments, compared with free Ure B and clinically used aluminum-adjuvant-based vaccine (Alum-Ure B), GO-PEG-PEI-Ure B induces stronger cellular immunity via intradermal administration, suggesting promising applications in cancer immunotherapy. Our work not only presents a novel, highly effective GO-based vaccine nano-adjuvant, but also highlights the critical roles of surface chemistry for the rational design of nano-adjuvants. More
A “self-assembling” system means that a person is injected with instructions that set into motion a process where a structure is assembled inside the body, using resources available in the blood (such as iron and oxygen atoms). In effect, nanotech self-assembly means that a microchip doesn’t need to be “injected” into someone, since the circuitry can be assembled in vivo after injection.
Every biological creature on Earth is a living example of self-assembly; DNA is a self-assembled nanostructure. Genetic replication is, of course, a process rooted in self-assembly.
“Myriad magnetic nanosystems can be created by using self-assembly as a synthetic tool,” says the abstract of a study published in January 2021.
Published in the journal Aggregate Open Access, it’s titled: Self-assembled magnetic nanomaterials: Versatile theranostics nanoplatforms for cancer.
The paper focuses on, “Self-assembled magnetic nanomaterials (MNMs)” and details their use in biomedicine... More